ABOUT IJPS

The International Journal of Physical Sciences (IJPS) is published weekly (one volume per year) by Academic Journals.

International Journal of Physical Sciences (IJPS) is an open access journal that publishes high-quality solicited and unsolicited articles, in English, in all Physics and chemistry including artificial intelligence, neural processing, nuclear and particle physics, geophysics, physics in medicine and biology, plasma physics, semiconductor science and technology, wireless and optical communications, materials science, energy and fuels, environmental science and technology, combinatorial chemistry, natural products, molecular therapeutics, geochemistry, cement and concrete research, metallurgy, crystallography and computer-aided materials design. All articles published in IJPS are peer-reviewed.

Contact Us

Editorial Office: ijps@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/IJPS
Submit manuscript online http://ms.academicjournals.me/
Prof. Sanjay Misra
Department of Computer Engineering, School of Information and Communication Technology
Federal University of Technology, Minna, Nigeria.

Prof. Songjun Li
School of Materials Science and Engineering,
Jiangsu University, Zhenjiang, China

Dr. G. Suresh Kumar
Senior Scientist and Head Biophysical Chemistry Division Indian Institute of Chemical Biology (IICB)(CSIR, Govt. of India), Kolkata 700 032, INDIA.

Dr. 'Remi Adewumi Oluyinka
Senior Lecturer,
School of Computer Science
Westville Campus
University of KwaZulu-Natal
Private Bag X54001
Durban 4000
South Africa.

Prof. Hyo Choi
Graduate School
Gangneung-Wonju National University
Gangneung, Gangwondo 210-702, Korea

Prof. Kui Yu Zhang
Laboratoire de Microscopies et d’Etude de Nanostructures (LMEN)
Département de Physique, Université de Reims, B.P. 1039, 51687, Reims cedex, France.

Prof. R. Vittal
Research Professor,
Department of Chemistry and Molecular Engineering
Korea University, Seoul 136-701, Korea.

Prof Mohamed Bououdina
Director of the Nanotechnology Centre
University of Bahrain
PO Box 32038, Kingdom of Bahrain

Prof. Geoffrey Mitchell
School of Mathematics, Meteorology and Physics
Centre for Advanced Microscopy
University of Reading Whiteknights, Reading RG6 6AF
United Kingdom.

Prof. Xiao-Li Yang
School of Civil Engineering,
Central South University, Hunan 410075, China

Dr. Sushil Kumar
Geophysics Group,
Wadia Institute of Himalayan Geology, P.B. No. 74 Dehra Dun - 248001(UC)
India.

Dr. Suleyman KORKUT
Duzce University
Faculty of Forestry
Department of Forest Industrial Engineering
Beciyorukler Campus 81620
Duzce-Turkey

Prof. Nazmul Islam
Department of Basic Sciences & Humanities/Chemistry, Techno Global-Balurghat, Mangalpur, Near District Jail P.O. Beltalapark, P.S: Balurghat, Dist.: South Dinajpur, Pin: 733103,India.

Prof. Dr. Ismail Musirin
Centre for Electrical Power Engineering Studies (CEPES), Faculty of Electrical Engineering, Universiti Teknologi Mara, 40450 Shah Alam, Selangor, Malaysia

Prof. Mohamed A. Amr
Nuclear Physic Department, Atomic Energy Authority
Cairo 13759, Egypt.

Dr. Armin Shams
Artificial Intelligence Group, Computer Science Department, The University of Manchester.
Editorial Board

Prof. Salah M. El-Sayed
Mathematics, Department of Scientific Computing,
Faculty of Computers and Informatics,
Benha University, Benha, Egypt.

Dr. Rowdra Ghatak
Associate Professor
Electronics and Communication Engineering Dept.,
National Institute of Technology Durgapur
Durgapur West Bengal

Prof. Fong-Gong Wu
College of Planning and Design, National Cheng Kung University
Taiwan

Dr. Abha Mishra
Senior Research Specialist & Affiliated Faculty.
Thailand

Dr. Madad Khan
Head
Department of Mathematics
COMSATS University of Science and Technology
Abbottabad, Pakistan

Prof. Yuan-Shyi Peter Chiu
Department of Industrial Engineering & Management
Chaoyang University of Technology
Taichung, Taiwan

Dr. M. R. Pahlavani
Head, Department of Nuclear physics,
Mazandaran University, Babolsar-Iran

Dr. Subir Das
Department of Applied Mathematics,
Institute of Technology, Banaras Hindu University, Varanasi

Dr. Anna Oleksy
Department of Chemistry
University of Gothenburg
Gothenburg, Sweden

Prof. Gin-Rong Liu
Center for Space and Remote Sensing Research
National Central University, Chung-Li, Taiwan 32001

Prof. Mohammed H. T. Qari
Department of Structural geology and remote sensing
Faculty of Earth Sciences
King Abdulaziz University Jeddah, Saudi Arabia

Dr. Jyhwen Wang
Department of Engineering Technology and Industrial Distribution
Department of Mechanical Engineering
Texas A&M University
College Station,

Prof. N. V. Sastry
Department of Chemistry
Sardar Patel University
Vallabh Vidyanagar
Gujarat, India

Dr. Edilson Ferneda
Graduate Program on Knowledge Management and IT,
Catholic University of Brasilia, Brazil

Dr. F. H. Chang
Department of Leisure, Recreation and Tourism Management,
Tzu Hui Institute of Technology, Pingtung 926, Taiwan (R.O.C.)

Prof. Annapurna P. Patil
Department of Computer Science and Engineering,
M.S. Ramaiah Institute of Technology, Bangalore-54, India.

Dr. Ricardo Martinho
Department of Informatics Engineering, School of Technology and Management, Polytechnic Institute of Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901 Leiria, Portugal.

Dr. Driss Miloud
University of Mascara / Algeria
Laboratory of Sciences and Technology of Water
Faculty of Sciences and the Technology
Department of Science and Technology
Algeria

Prof. Bidyut Saha
Chemistry Department, Burdwan University, WB, India
A comparative study of maximum power point tracker approaches based on artificial neural network and fuzzy controllers
Moustapha Séne, Fatou Ndiaye, Marie E. Faye, Saliou Diouf and Amadou S. Maïga
A comparative study of maximum power point tracker approaches based on artificial neural network and fuzzy controllers

Moustapha Séne¹, Fatou Ndiaye¹, Marie E. Faye¹, Saliou Diouf² and Amadou S. Maïga¹∗

¹Electronics IT Telecommunications and Renewable Energy Laboratory (LEITER), Gaston Berger University, Route de Ngallele, P. O. Box 234 Saint-Louis, West Africa, Senegal.
²Information Processing Laboratory (LTI), High Polytechnic School, Cheikh Anta Diop University, P. O. Box 5085 Dakar–Fann, West Africa, Senegal.

Received 12 November, 2017; Accepted 20 December, 2017

The performances of a photovoltaic (PV) module connected to a load through a conversion stage (chopper, inverter) are linked to the average electricity output including the delivered power. Nevertheless, the efficiency depends on atmospheric parameters as temperature, irradiance, and wind speed. To make electrical power available, Maximum Power Point Trackers (MPPT) algorithms are developed to keep up the PV module at optimal operating point with regard to climatic variations. This paper proposes an assessment of Artificial Neural Networks model based on MultiLayer Perceptron (MLP) and Radial Basis Function (RBF). A comparative study with an Adaptive Neuro-Fuzzy Inference System and a hybrid neural network RBF/MLP is done using measured data to optimize the maximum power point of a photovoltaic generator.

Key words: Multilayer perceptron, radial basis function, maximum power point trackers, neuro-fuzzy.

INTRODUCTION

The optimization of the power supply is a fundamental problem for electrical generator monitoring. Many improvements have been made on Maximum Power Point Tracker (MPPT) algorithms to control the DC/DC converter inserted on photo-voltaic plant (Elgendy et al., 2012; Mastromauro et al., 2012). Considered as the P&O algorithm and the one of Incremental Conductance (Elgendy et al., 2016), electrical performances are of low reliability and output average, because the maximum power of photovoltaic (PV) module depends on the impedance of the load to which it is connected; but the major drawback is the perturbation due to changing atmospheric conditions (Zou et al., 2012).

Several experimental studies based on the Artificial Neural Network (ANN) method, have shown the variation of the electrical performances of the PV module, using a...
Figure 1. Architecture of the hybrid model.

database of measured irradiance, the temperature and also the optimum duty cycle (Saloux et al., 2011; Reisi et al., 2013). MultiLayer Perceptron (MLP) and Radial Basis Function (RBF) networks must be used to provide non-linearity and self-adapting capability in controlled plants (Haskin, 2005).

This paper describes an assessment developed to provide different approaches for determining the maximum power of photovoltaic system in Sahelian region, where standard characteristics are not applicable. We present a comparison of MPPT approaches based on Artificial Neural Network (ANN) and Neuro-Fuzzy Controllers. It focuses on performances errors of the voltage curves relation between the measured electrical power and the developed model of a PV generation system.

HYBRID ANN MODEL

The MPPT strategy proposed here is based on a knowledge principle known as ANN which is an adaptive controller that can be developed for energy applications such as tracking the maximum power point of the PV module according to experimental data (Enany, 2017). In modern fields, a multilayer perception network trained by a supervised learning backpropagation algorithm associated to Levenberg-Marquardt method minimizes the mean square error layer (Ndiaye et al., 2015). A hybrid model has been developed in order to calculate the maximum power considering the changing atmospheric climate. The architecture of the mentioned model is composed of both RBF and MLP schemes used to explore the maximum power:

(i) The RBF scheme performs a local approach of the input vectors (temperature, wind speed and irradiance) to approximate the maximum current (Imax) and the maximum voltage (Vmax) delivered by a PV module.

(ii) The MLP scheme performs a comprehensive approach to the space of input vectors (Imax; Vmax) to derive the maximum power optimally (Bahgat et al., 2005; Elgharbi et al., 2012).

The architecture of this RBF/MLP hybrid model is described in Figure 1. The input layers contain three neurons as it composed of three inputs (solar radiation, ambient temperature and wind speed). The first hidden layer includes twenty neurons; this number is selected according to network stability and electrical parameters...
Higher, written in the form five characterizations corresponds fuzzified by each climatic measure associated to the problem is the evaluate into a rules related to three inputs variables which the Takagi and Sugeno fuzzy model has the format:

$$\tilde{W}_{i} = f_i(\tilde{\beta}_j + \sum^{N}_{i=1} P_{ij} \cdot I_{pi})$$

(1)

Here, f_i is the transfer function of hidden neuron which has a weight P_{ij} from the input vector I_{pi} and a bias β_j. Weights and biases are updated with a specified learning function.

ADAPTIVE NEURO-FUZZY CONTROLLER

The Adaptive Neuro-Fuzzy controller is a training algorithm for Takagi and Sugeno fuzzy inference systems (Vafaei et al., 2015). It is based on both learning algorithm as the least-squares method and the backpropagation gradient descent method used to emulate a given training input-output data set (Jang and Anfis, 1993, 1995). The FIS membership function parameters x^k_i invoked an output node i applied to a layer k as the following:

$$X^k_i = f(x^{k-1}_i \ldots x^{k-1}_{i-1}, a, b, c \ldots .)$$

(2)

With n_{k-1} the number of nodes in layer $k-1$ and a, b, c, \ldots the (i, k) node parameters. A typical fuzzy rule in a Takagi and Sugeno fuzzy model has the format:

If x is A_1 and y is B_1 $then$ $O_i = f_i(x, y).$

Where A_1 and B_1 are fuzzy sets in the antecedent; $O_i = f_i(x, y)$ takes usually a polynomial form:

$$O_i = f_i(x, y) = a_i x_i + b_i y_i + c_i$$

(3)

The proposed MPPT ANFIS controller uses 125 fuzzy rules related to three inputs variables which are mapped into a fuzzy inference system to a crisp output (maximum power). It should be noted that our objective is to evaluate the error performances regarding three terms: the MSE, the MAE and the correlation coefficient. Indeed, each climatic measure associated to the problem is fuzzified by defining a membership function that corresponds to Sugeno. Furthermore we need to describe the input variables using linguistic characterization and every linguistic variable can have five linguistic terms shown in Figure 2: [VL, SL, SH, MH, VH] (the training sets derived from these terms can be written in the form Very Lower, Small Lower, Small Higher, Medium Higher, Very Higher) and their membership functions are of the Gaussian form characterized by two parameters.

EXPERIMENTAL PROTOCOL

The experimental set-up protocol used for validation of the described controller chain is based on MPPT techniques for two typical days (cloudy and sunny). Table 1 gives the electrical characteristics of the AP100SS PV module device and the experimental site geographical characteristics. So, three environmental inputs have been measured (in Niamey/Niger) to approximate the maximum power point: the irradiance, the ambient temperature and the wind speed corresponding to changing atmospheric conditions (typical days). A picolog manager is used providing the PV module outputs with electrical values following the current, the voltage and the power. The main problem of experimental protocol is to interpret the maximum power point within MPPT algorithm whatever the weather conditions. To insure adaptive controller, the latter is always adjusted to the trained model then compared to measured data set. In case of convergence, the routine controller is emulated by computing error performances (Figure 3).

RESULTS AND DISCUSSION

The adaptive controller is used exploiting ANN learning ability and fuzzy reasoning technique to follow the maximum power in PV devices. The resulting system is adjusted from available knowledge related to climatic data measured at Niamey NIGER. In order to compare the mentioned adaptive controllers, MPPT algorithms have been carried for typical given days (cloudy and sunny). It is interesting to note from Figure 4 that the PV module is performed to find the maximum power from typical sunny days’ databases. Daily estimated data (Poptphy), respectively measured data (Poptpv), are evaluated by computing error performances as a correlation coefficient (corr. Coef.), mean square error (MSE) and mean absolute error (MAE) for each controller. Table 2 summarizes results relative to obtained performances using adaptive RBF/MLP controller based scheme. The considered MSE and MAE errors performances decrease for involving cloudy days. This shows that adaptive RBF/MLP controller allows approximating maximum power point and must be adapted to abrupt climate changes.

Figure 5 shows the maximum power calculated with the adaptive neuro-fuzzy controller (Poptanf). This latter is compared to the computed RBF/MLP algorithm (Poptphy) and the one of measured data (Poptpv) for typical atmospheric environments. For a sunny day covered from ANFIS controller, the errors performances are lower than the RBF/MLP. So inserting an MPPT Adaptive neuro-fuzzy controller allows the control of the power converter to provide maximum power to the load (Table 3). Concerning the typical cloudy days’ data, ANFIS approach presents the higher error. This is due to the oscillation around the maximum power point.
Figure 2. Linguistics terms issued typical sunny day (a) for the irradiance (b) for wind speed (c) for temperature.

Table 1. Electrical characteristics of AP100S5 PV module device and experimental site and geographical characteristics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum power (Pm)</td>
<td>70 W</td>
</tr>
<tr>
<td>Voltage at Pm (Vm)</td>
<td>15.5 V</td>
</tr>
<tr>
<td>Current at Pm (Im)</td>
<td>4.5 A</td>
</tr>
<tr>
<td>Open-circuit voltage (Voc)</td>
<td>21.8 V</td>
</tr>
<tr>
<td>Short-circuit current (Isc)</td>
<td>5.05 A</td>
</tr>
<tr>
<td>NOCT (Air 25°C; sun 1 kW/m²; wind 1 m/s)</td>
<td>47 ± 2°C</td>
</tr>
<tr>
<td>Temperature coefficient of Isc</td>
<td>((0.065±0.015))%/°C</td>
</tr>
<tr>
<td>Temperature coefficient of Voc</td>
<td>((-80±10)) mV/°C</td>
</tr>
<tr>
<td>Temperature coefficient of power</td>
<td>((-0.5±0.05)) %/°C</td>
</tr>
<tr>
<td>Tolerance</td>
<td>(±3)</td>
</tr>
<tr>
<td>Solar Cell</td>
<td>72 cells</td>
</tr>
<tr>
<td>Number of cells in series</td>
<td>36</td>
</tr>
<tr>
<td>Number of cells in parallel</td>
<td>2</td>
</tr>
<tr>
<td>Strings Latitude (Niamey/Niger)</td>
<td>13°31’01” North</td>
</tr>
<tr>
<td>Longitude (Niamey/Niger)</td>
<td>2°06’00” East</td>
</tr>
<tr>
<td>Slant of PV module</td>
<td>16 degrees South</td>
</tr>
</tbody>
</table>
Figure 3. PV module adaptive controller chain.

Figure 4. Maximum power issued adaptive RBF/MLP controller (a) sunny day; (b) cloudy day.

Table 2. Error performances of adaptive RBF/MLP controller.

<table>
<thead>
<tr>
<th>Day</th>
<th>MSE (mW)</th>
<th>MAE (mW)</th>
<th>corr. coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny day</td>
<td>0.54</td>
<td>13.30</td>
<td>0.990</td>
</tr>
<tr>
<td>Cloudy day</td>
<td>0.17</td>
<td>0.40</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Figure 5. Maximum power issued adaptive neuro-fuzzy controller (a) sunny day; (b) cloudy day.

Table 3. Error performances of adaptive neuro-fuzzy controller.

<table>
<thead>
<tr>
<th>Day</th>
<th>MSE (mW)</th>
<th>MAE (mW)</th>
<th>corr. coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny day</td>
<td>0.49</td>
<td>6.20</td>
<td>0.99</td>
</tr>
<tr>
<td>Cloudy day</td>
<td>4.36</td>
<td>3.72</td>
<td>0.997</td>
</tr>
</tbody>
</table>

Conclusion

In photovoltaic plants, the operating point is important in terms of controlling the DC/DC converter. The right tracking for the maximum power of the PV generator will adapt to the impedance of the load to which it is connected. In order to predict the optimal power point, different controllers are used for tuning parameters of adaptive algorithms. In this study, maximum power points are tracked using adaptive algorithms tuned by climatic database. Results indicate improved performances between measured data and predicted ones of sunny days with the neuro-fuzzy model. Further studies involve a hybrid ANN model used in sudden changes of climatic parameters which suit the aforementioned Sahelian region.

CONFLICT OF INTEREST

The authors have not declared any conflict of interests.

REFERENCES
